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In a short superconducting nanowire connected to bulk superconducting leads, quantum phase slips behave
as a system of linearly �as opposed to logarithmically� interacting charges. This system maps onto quantum
mechanics of a particle in a periodic potential. We show that, while the state with a high density of phase slips
is not a true insulator �a consequence of Josephson tunneling between the leads�, for a range of parameters it
behaves as such down to unobservably small temperatures. We also show that quantum phase slips give rise to
multiple branches �bands� in the energy-current relation and to an interband �“exciton”� mode.
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I. INTRODUCTION

There is currently much interest in low-temperature prop-
erties of very thin superconducting wires. The key process,
the significance of which one aims to understand, is a quan-
tum phase slip �QPS�,1 a virtual depletion of the supercon-
ducting density through which the system tunnels to a differ-
ent value of the supercurrent. The rate of this process
depends not only on the “bare” fugacity—the tunneling ex-
ponential associated with the phase-slip core—but also on
the interaction between individual QPSs.

The present study has been motivated by the observation2

that, for a wire connected to bulk superconducting leads, as
the length of the wire is reduced, the logarithmic interaction
between QPSs crosses over to a linear one. Since we are
talking about a tunneling process, the interaction takes place
in the �x ,�� plane, where x is the spatial coordinate and � is
the Euclidean time. Heuristically, the change in the character
of the interaction comes about because, during tunneling, the
leads inhibit production of quasiparticles �plasmons� with
nonzero wave numbers, so the “lines of force” in the �x ,��
plane align in the � direction and form a “string” with a
nonzero tension.

Now, it is well known that in the case of a logarithmic
interaction, the system undergoes a phase transition that can
be interpreted as unbinding of QPS–anti-QPS pairs. There
are, in fact, several varieties of this phenomenon: a phase
transition3 in the Kondo problem and the equivalent
transition4,5 in the two-state dissipative quantum mechanics
�DQM�, the Berezinskii-Kosterlitz-Thouless �BKT�
transition6–8 in the XY model, and, finally, the
superconductor-insulator transition �SIT� in the DQM with a
periodic potential.9,10 Long superconducting wires with sig-
nificant amounts of disorder fall into the latter universality
class.11 Is there a similar transition in short wires where the
interaction between QPSs is linear? Experiments do bring
out a difference between short12,13 and long14,15 wires and
suggest that a sharp transition exists in the former case.

Here, we present two theoretical results concerning this
problem. First, we point out that in a short wire connecting
bulk superconductors, there is no absolute distinction be-
tween a superconductor and an insulator: even an “insulator”
can support a weak supercurrent due to Josephson tunneling.
Second, we show that there is, nevertheless, a range of pa-

rameters for which the wire acts as an insulator down to
unobservably small temperatures.

There is a mean-field-type approach16 to short wires that
models QPS as an effective resistive environment. In that
approach, the renormalization-group equation for the QPS
fugacity is taken to be the same as in a long wire, except that
the plasmon impedance is replaced by an effective shunt re-
sistance. The latter is determined self-consistently and in-
cludes the QPS channel �Rps�, quasiparticles �Rqp�, and the
impedance of the electrodes �Relec�. While this procedure
may qualitatively reflect the correct physics, it is not clear if
it can be justified from first principles. Moreover, for the
superconducting state in the limit when Relec=0 and Rqp
�Rps, it does not reproduce the exponential dependence of
Rps on the temperature found2 by direct calculation.

Here, we consider the problem of SIT in short wires �with
bulk superconducting leads� starting directly from the de-
scription in terms of a classical gas of particles with linear
interactions in one ��� dimension �Sec. II�. We study this
system in two different regimes �Secs. III and V�, where two
different approximations are possible. In Sec. IV we pause to
describe two potentially observable effects predicted by our
theory: a breakdown voltage, which, under certain condi-
tions, provides a direct measure of the QPS fugacity, and a
curious “exciton” mode. Prospects for detection of the break-
down voltage in experiment are discussed in Sec. VI. Sec.
VII is a conclusion.

II. ONE-DIMENSIONAL GAS WITH LINEAR
INTERACTIONS

Our starting point is the partition sum of linearly interact-
ing charges, which represent QPS and anti-QPS. This can be
conveniently written as a path integral over an equivalent
electrostatic potential ����,

Z =� D����exp�−
1

2K
� d������2�

� �
N�=0

� � 1
2��N++N−

N+ ! N−!
� �

l=1

N+

d�le
i���l��

m=1

N−

d�m� e−i���m� �. �1�

Note that the integral over the constant ��-independent� com-
ponent of � enforces the condition of charge neutrality: only
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terms with N+=N− contribute to the sum. Most of the expres-
sions below will be for zero temperature �i.e., infinite extent
of the � dimension�, but occasionally we will discuss conse-
quences of the cutoff on � imposed by finite temperature.

The parameters appearing in Eq. �1� are �, the bare QPS
fugacity, and K, the strength of the linear interaction. The
role of K can be understood by noting that, for a single
QPS–anti-QPS pair, the path integral over ���� would be

� D����exp�−
1

2K
� d������2 + i���1� − i���2��

= e−�1/2�K��1−�2�. �2�

These two parameters encode a wealth of microscopic details
of the phase-slip process. For example, if QPSs are rare, � is
proportional to exp�−Score�, where Score, the action of the
QPS core, depends on the device specifics, such as the su-
perconducting gap, the wire’s width and thickness, and the
width and thickness variations. When the latter are signifi-
cant, QPS may favor a constriction, making � independent of
the wire’s length L. On the other hand, in a uniform wire,
QPSs occur preferentially at the center,2 but the preference is
rather weak, and � scales linearly with L.

The value of K is determined by the one-dimensional su-
perconducting stiffness Ks�x� �including possible variations
of Ks with the width and thickness�,

1

K
=

1

4	2� dx

Ks�x�
. �3�

Here x is the coordinate along the wire. For a uniform wire,
this gives K
Ks /L, i.e., K scales inversely with the length.
The linear interaction in Eq. �2� then matches that obtained
in Ref. 2. We recall that, from the microscopic point of view,
the linear interaction between QPS reflects the energy of the
initial and final tunneling states, in which fluctuations of the
magnitude of the order parameter are small. This is why it is
possible to find the strength of the interaction using the
phase-only theory.2

In more detail, the relation of Eq. �1� to the phase-only
theory is as follows. Consider the field ��x ,�� dual to the
phase ��x ,�� of the superconducting order parameter in the
sense that ���
�x�. Since �x� is proportional to the charge
density, � can be thought of as the density of the electric
dipole moment �in suitable units�. When the leads are bulk
superconductors, all �-dependent components of � satisfy the
Dirichlet boundary conditions �b.c.� at the ends of the wire.2

In view of the duality relation above, the Dirichlet b.c. for �
imply the Neumann b.c. for � at both ends.

Then, if � is much smaller than the charging energy of the
wire and the temperature is low enough, only the spatially
uniform mode of ��x ,�� matters, so instead of a field we
have a single quantum-mechanical degree of freedom, ����.
Leaving aside overall constant factors, one can think of it as
being the total dipole moment of the wire or, alternatively,
the total charge transported through the wire since some
fixed initial moment of time. It also coincides with the
equivalent potential that appears in Eq. �1�.

Equation �1� is an effective low-energy theory, which en-
codes the high-energy details in the values of its parameters,

and so is valid only up to some cutoff frequency �. Since the
theory does not include fermionic quasiparticles, the cutoff is
of the order of or smaller than the superconducting gap 
.
Sometimes we will need a way to explicitly include such a
cutoff in our calculations. One possibility, which we use in
Sec. V, is to modify the kinetic term of � so as to suppress
modes above a cutoff frequency. Another possibility, suitable
for Monte Carlo simulations, is to discretize time. Cutoff
dependence is discussed in Sec. VI. For now, we consider the
case when both K and � are much smaller than �, so the
cutoff does not matter.

The sums in Eq. �1� can be evaluated by noting that the
sum over N+ at fixed N=N++N− is Newton’s binomial, and
the remaining sum over N is an exponential �of �	d� cos ��.
Thus, Eq. �1� is equivalent to the theory with the Euclidean
action,

S =� d�
 1

2K
�����2 − � cos ����� . �4�

This is similar to the mapping between the Coulomb gas and
the sine-Gordon model in two dimensions.17–19

Equation �4� is quantum mechanics of a particle in a co-
sine potential. Solutions to the corresponding Schrödinger
equation �the Mathieu functions� are known, and occasion-
ally we will refer to their properties. For most of the time,
however, we will consider various limits of Eq. �4�, for
which the recourse to the exact solution is not necessary.

Our system of charges with linear interactions is reminis-
cent of electrostatics in one dimension—an often used meta-
phor of quark confinement �see, for example, Ref. 20�. As
known in that context, depending on the dynamics of the
charges, such a system can be in either a plasma or a con-
finement phase. The distinction lies in the large-distance be-
havior of a correlation function of fractional external
charges. We therefore consider

Cq��� = ��eiq����e−iq��0�

 , �5�

with arbitrary q. Double brackets denote averaging with
exp�−S�. In a plasma state, the charges can screen any exter-
nal charge, integer, or fractional. This corresponds to Eq. �5�
approaching a constant value at large � for any q. In the
confinement phase, integer external charges can still be
screened, by new charges nucleating from the vacuum, but
fractional charges cannot. As a result, correlator �5� with
fractional q goes to zero at large �.

In the condensed-matter context, a plasma state, where the
equivalent charges �the QPS� are unbound, corresponds to an
insulator and the confinement phase to a superconductor. We
now argue that, in the present case, there is no true insulator,
i.e., Eq. �5� always goes to zero for fractional q.

III. HIGH PHASE-SLIP DENSITY

We begin with the limit that is the best candidate for an
insulator,

� � K , �6�

when QPSs are abundant. In this limit, the dominant paths
are those where ���� spends most of the time in the vicinity
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of a minimum of the cosine potential but occasionally makes
a transition to a neighboring minimum.

A natural way to describe this physics is the semiclassical
approximation. To take into account small fluctuations of �
near �=0, we expand the cosine in Eq. �4� in powers of �
and treat the �2 term as a “mass” and the higher powers as
an interaction. The Green’s function of � in the free massive
theory is

G��� =
K

2�e
e−�e���, �7�

where �e is the characteristic frequency,

�e
2 = K� . �8�

Using this Green’s function as a propagator for perturbation
theory, one finds that the perturbative expansion is controlled
by the small parameter K /�, and the asymptotic of correlator
�5� at large �, in perturbation theory, remains close to 1.

In addition to these perturbative fluctuations, however,
there are large fluctuations �instantons� connecting different
minima of the cosine. They are solitons and antisolitons of
the sine-Gordon model, for example,

�inst��� = 4 arctan e�e�.

Their action is

Sinst = 8��/K�1/2. �9�

These instantons are in a sense dual to the QPS, so when
QPSs are numerous, instantons are rare. Under condition �6�,
they form a dilute gas with average density,

n̄ � �e
�Sinste

−Sinst. �10�

Each instanton contained in the interval �0,�� contributes
exp�2	iq� to correlator �5� and each anti-instanton exp�
−2	iq�. Statistics of these is that of an ideal gas, i.e., is given
by the Poisson distribution P�N�. Hence,

Cq��� � �
N+N−

P�N+�P�N−�e2	iq�N+−N−� = e−2�n̄�1−cos�2	q��.

�11�

We see that, due to the instantons, fractional charges are
confined, with the string tension proportional to the instanton
density. Note, however, that in practice � is cutoff by the
inverse temperature, so the confinement of fractional charges
�i.e., superconductivity� will not be observed until the tem-
perature gets as low as T� n̄, which in the present case is
exponentially small.

The underlying physics becomes more transparent if one
observes that �t� /2	 is the electric current in units of 2e
�here t=−i� is the real time and e is the electron charge�.
Thus, each instanton transports 2e of charge through the
wire. A delocalized state of � �a Bloch wave of theory �4��
corresponds to a steady current. At small K /�, the instanton
rate is strongly suppressed, and for many purposes the sys-
tem behaves as an insulator, but even then a weak steady
current is possible by tunneling of charges through the wire
�the Josephson effect�.

Note also that, in a uniform wire, both K and � depend on
the wire’s length L, � being directly and K inversely propor-
tional to it. Decreasing the length connects smoothly the “in-
sulating” state of a nanowire to the superconducting state of
a Josephson junction �JJ�.

IV. EXCITON AND BREAKDOWN VOLTAGE

The spectrum of theory �4� has a band structure. In the
path-integral formalism, the quasimomentum of these bands
appears as a � angle associated with the instanton number

Q =
1

2	
� d���� .

Thus, we generalize Eq. �4� as follows:

S → S + i�Q . �12�

Each instanton now contributes an additional factor of e�i�,
and in the dilute-gas approximation the dependence of the
partition sum on � is

Z���
Z�0�

= exp�2� d�n̄�cos � − 1�� . �13�

The average current is obtained by differentiating ln Z���
with respect to � and equals

I =
i

2	
�����

 = 2n̄ sin � , �14�

where I is in units of 2e. The maximal �critical� current is
Ic=2n̄. Equation �14� is of the familiar Josephson form, so
we conclude that the quasimomentum �or � angle� of the �
description is precisely the relative phase 
� of the order
parameter at the two ends of the wire.

The interpretation of 
� as quasimomentum is particu-
larly apt given that in the absence of phase slips �i.e., for �
=0� 
�, multiplied by the superfluid density, is the total mo-
mentum of the superfluid in the wire. One can say that phase
slips turn momentum into quasimomentum. This is similar to
how phase slips enforce periodicity with respect to the mag-
netic flux enclosed by a superconducting nanoring.21

Note, though, that ln Z��� gives only one band of the
band structure, namely, the one corresponding to the ground
state. In fact, there are additional bands, which can be ob-
tained from the exact solution to the quantum-mechanical
problem �4�. They correspond to additional branches of en-
ergy as a function of the quasimomentum, E���, as shown in
Fig. 1. One consequence of this is the existence of an inter-
band excitation, which we term the exciton. At a fixed bias-
ing current I, the exciton connects states for which the en-
ergy curves have equal slopes dE /d�= I. Since these states
have different values of � �in particular, for I=0, the excited
state is a 	 state�, the transition produces a pulse of voltage.

The exciton is distinct from the usual Josephson plasmon,
and the band structure described above is distinct from that
described in Ref. 22. The plasmon can be included in the
theory by supplying � with nonstatic modes and generalizing
action �12� into
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S̃ = S +
i

2	
� d����� + T�

n�0
P��n���n�2, �15�

where T is the temperature, �n=2	nT �n=integer� are the
Matsubara frequencies, and P��� is the plasmon response
kernel. The interaction between the plasmon and the exciton,

represented by the second term in Eq. �15�, is the standard Î�

interaction, with Î
��� describing the fluctuating current.
The only nonlinearity in Eq. �15� is the cosine potential in

S �Eq. �4��. If ���� were the slowest variable in the problem,
we could have, in the dilute instanton gas approximation,
integrated � out, just as we did for a constant � in Eq. �13�.
This is possible if, at small �, P��� is purely capacitive,
P���
C�2, and the capacitance C is sufficiently small. In
this case, we recover the theory of Ref. 22. We know, how-
ever, that, in general, superconducting leads modify the low-
frequency response significantly. For effectively one-
dimensional leads, P���
 ��� /Z at small ���, Z being the
plasmon impedance of the leads �see Ref. 2�, while for three-
dimensional ones we expect P��� to go to a constant. The
limit of “bulk” leads considered in this paper corresponds to
P being large, so that integrating out the n�0 modes of �
results only in a small correction to the kinetic term in Eq.
�4�. This allows us to neglect plasmons altogether in a study
of the low-frequency �ground-state� properties. We note,
however, that the plasmon-exciton coupling may become im-
portant when the device is operated at a higher frequency,
e.g., by being subjected to microwave radiation.

Since � is proportional to the dipole moment of the wire,
it couples, via a �V term, to the voltage V across the wire.
For a wire deep in the ‘‘insulating’’ regime, � can sit for a
long time near one minimum of the cosine potential. Its fluc-
tuations there are small, and its value is related to the voltage
by

V =
	�

e
sin � � Vc sin � . �16�

At small V, the exciton is a transition to an excited state near
the same minimum. The critical value Vc=	� /e is the break-
down voltage, at which � begins to escape classically, and
the system becomes a conductor.

Another breakdown channel, which opens at V�Vg
�2
 /e, is production of quasiparticle pairs. However, the
condition ����
, under which we have been operating

�and validity of which for realistic wires is discussed in Sec.
VI�, guarantees that Vc�Vg.

V. LOW PHASE-SLIP DENSITY

We now consider the limit of small QPS fugacity,

� � min�K,�� , �17�

where � is the ultraviolet �UV� cutoff. In this case, it is
natural to expand the partition sum in powers of �. This
brings in correlators of the Gaussian theory,

S0 =
1

2K
� d������2, �18�

which need to be regulated in the infrared �IR�. To this end,
we modify Eq. �18� as follows:

S0 →
1

2
� d�d������M0��,�;�,�������� , �19�

where M0 is a differential operator whose inverse �the
Green’s function� G0�M0

−1 is

G0��,�;�,��� =
K

2
� 1

�
e−���−��� −

1

�
e−���−���� . �20�

This implements an IR cutoff at frequencies of order � ��
���. Indeed, for ���−����1, Eq. �20� nearly coincides with
the unregulated Green’s function, proportional to ��−���
+const, but at large distances it decays exponentially, instead
of growing linearly. In addition, Eq. �20� provides an explicit
UV cutoff at frequencies of order �.

The requisite correlators are

�eiq�
 = e−�1/2�q2G0�0�, �21�

�eiq��0�e�i����
 = exp�−
1

2
�q2 + 1�G0�0� � qG0���� ,

�22�

etc. Single angular brackets denote averages in the Gaussian
theory, and we have used the shorthand notation G0���
�G0�� ,� ;� ,0�. We do not include a � angle in this section.

For simplicity, in this section we calculate, instead of cor-
relator �5�, directly its large � limit, i.e., the expectation value
of the “disorder parameter,”

��eiq��0�

 = �eiq��0�
 + �� d��eiq��0� cos ����
c + ¯ ,

�23�

where the subscript c denotes the connected part. The expec-
tation value is even in q, and in what follows we assume
q�0.

The first term on the right-hand side of Eq. �23� rapidly
vanishes as the IR cutoff is removed ��→0�, but the second
one generally does not. The relevant piece is

−π π
ϑ

Ε(ϑ)

FIG. 1. A schematic of the band structure of theory �4�. The
arrows show exciton transitions for two different values of the bi-
asing current I. Note that the exciton frequency in general depends
on I.
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� d��eiq��0�e−i����
c �
4

qK
e−�K/4���q − 1�2

f�K/�,q� , �24�

where f is a dimensionless function independent of �;
f�0,q�=1. The approximation sign indicates that we have
retained only the leading term in the �→0 limit. We see that
for any q�1 Eq. �24� vanishes exponentially at �→0, but
for q=1 it remains constant.

The pattern repeats itself in higher orders in �, except that
now larger �integer� charges can also be screened. This is
again the physics of confinement. Note that the main contri-
bution to the integral in Eq. �24� for q=1 comes from small
���, which means that the screening charge, represented by
e−i���� in Eq. �24�, nucleates quite close to the external
charge. For example, for K��, the main contribution comes
from ����1 /K. This is how it should be since, according to
Eq. �2�, the string tension is 1

2K.

VI. BREAKDOWN VOLTAGE IN EXPERIMENT

At temperatures T�
 and with enough disorder, the ratio
K /
 depends on only one parameter—the total normal-state
resistance of the wire RN,2

K



=

2	2Rq

RN
. �25�

Here Rq=	 /2e2=6.45 k� is the resistance quantum. So, for
a wire with RN�Rq, the ratio is K /
�20. Estimates suggest
that the right quantity for numerical comparison with the UV
cutoff ��
 is not K itself but 1

4K or maybe even 1
8K. In

either case, though, such a wire is quite far from the cutoff-
independent regime K, ���.

To locate the crossover between the ‘‘insulating’’ state and
conventional superconductivity in the presence of a cutoff,
we have used Monte Carlo simulations, with time discretized
in steps of 
�=	 /� and the crossover defined �somewhat
arbitrarily� by the condition ��ei�

=0.5. Preliminary data in-
dicate that, at large K /�, the crossover occurs at a relatively
small and nearly K-independent value �c�0.4�. �Recall that
� is the fugacity per the entire wire and in a uniform wire is
proportional to the length.� Therefore, we do not exclude that
the observed zero-bias peaks in differential resistances of

‘‘insulating’’ wires23,24 are a manifestation of the electrical
breakdown effect described by Eq. �16�, and the excess �“off-
set”� voltage contained in such a peak provides an estimate
of the breakdown voltage Vc.

VII. CONCLUSION

In this paper, we have presented a theory of short super-
conducting wires that uses, as its basic variable, the wire’s
electric dipole moment. We have found this description to be
well suited to cases when the more conventional phase vari-
able has been made “heavy” �i.e., its fluctuations have be-
come inhibited� by sufficiently large, bulk superconducting
leads. The prominence of the dipole moment �polarization�
means that we view a small superconductor as if it was al-
most an insulator. We have seen, however, that, even in a
thinnest wire, the true insulating behavior is prevented by the
Josephson tunneling between the leads.

The thinner the wire is, the weaker that tunneling is. For
sufficiently thin wires, it is described by instantons of theory
�4�, which are suppressed exponentially, so the insulating
behavior persists down to exponentially low, unobservably
small temperatures. The height of the potential traversed by
the instantons, � in Eq. �4�, has the interpretation of the bare
fugacity of quantum phase slips in the wire.

We have presented two potentially testable predictions of
our theory. One effect, which, as discussed in Sec. VI, may
already have been observed, is the existence of a breakdown
voltage in ‘‘insulating’’ wires. The other is the exciton, cor-
responding to the interband transitions in theory �4�. It can
presumably be detected as a feature in the absorption spec-
trum. We should note, however, that Eq. �4� can be literally
applied to computation of the exciton spectrum only when
both � and the exciton frequency are much smaller than the
UV cutoff �.

Note added in proof. Recently, we learned about the work
of Mooij and Nazarov.25 They start from a somewhat differ-
ent premise than we do, but their results overlap with ours.
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